Technische Daten

Leiteraufbauten

nach DIN VDE 0295 Klasse 1 Eindrähtige Leiter für ein- und und mehradrige Kabel und Leitungen

Leiterwiderstand bei 20 °C Höchstwert Nennquer-Kupfer-Rundleiter schnitt blank metall-[mm-²]umhüllt [Ohm/km] [Ohm/km] 0,5 36,0 36,7 0,75 24,5 24,8 1 18,1 18,2 1,5 12,1 12,2 2,5 7,41 7,56 4 4,61 4,70 6 3,08 3,11 1,83 1,84 10 1,15 1,16 16 25 0,7271) 0,5241) 35 0,3871) 50 70 0,2681) 95 0,1931) 120 153¹⁾ 150 124¹⁾ 185 240 300 0,5 36,0 36,7 0,75 24,5 24,8

₁₎ für mineralisolierte Leitungen

nach DIN VDE 0295 Klasse 2

Mehrdrähtige Leiter für ein- und mehradrige Leitungen Kabel und Leitungen

M	Mindesta Einzeldräht		Leiterwiderstand bei 20 °C Höchstwert				
Nennquer- schnitt		diabtatar	Kupferleiter				
[mm²]	Cu-Rundleiter	verdichteter Cu-Rundleiter	blank	metall- umhüllt			
		- Turiarere	[Ohm/km]	[Ohm/km			
0,5	7		36,0	36,7			
0,75	7		24,5	24,8			
1	7		18,1	18,2			
1,5	7	6	12,1	12,2			
2,5	7	6	7,41	7,56			
4	7	6	4,61	4,70			
6	7	6	3,08	3,11			
10	7	6	1,83	1,84			
16	7	6	1,15	1,16			
25	7	6	0,727	0,734			
35	7	6	0,524	0,529			
50	19	6	0,387	0,391			
70	19	12	0,268	0,270			
95	19	15	0,193	0,195			
120	37	18	0,153	0,154			
150	37	18	0,124	0,126			
185	37	30	0,0991	0,100			
240	61	34	0,0754	0,0762			
300	61	34	0,0601	0,0607			
400	61	53	0,0470	0,0475			

nach DIN VDE 0295 Klasse 5 und 6

Klasse 5+6: Feindrähtige Kupferleiter für ein- und mehradrigen Leitungen

Nenn- querschnitt	grösster Durchmesser der	grösster Durchmesser der	Leiterwi	derstand bei 20°C Höchstwert
[mm²]	Einzeldrähte [mm] (Klasse 5)	Einzeldrähte [mm] (Klasse 6)	blanke Einzeldrähte [Ohm/km]	metallumhüllte Einzeldrähte [Ohm/km]
0,5	0,21	0,16	39,0	40,1
0,75	0,21	0,16	26,0	26,7
1	0,21	0,16	19,5	20,0
1,5	0,26	0,16	13,3	13,7
2,5	0,26	0,16	7,98	8,21
4	0,31	0,16	4,95	5,09
6	0,31	0,21	3,30	3,39
10	0,41	0,21	1,91	1,95
16	0,41	0,21	1,21	1,24
25	0,41	0,21	0,780	0,795
35	0,41	0,21	0,554	0,565
50	0,41	0,31	0,386	0,393
70	0,51	0,31	0,272	0,277
95	0,51	0,31	0,206	0,210
120	0,51	0,31	0,161	0,164
150	0,51	0,31	0,129	0,132
185	0,51	0,41	0,106	0,108
240	0,51	0,41	0,0801	0,0817
300	0,51	0,41	0,0641	0,0654

nach US-Normen

AWG	Querschnitt	Leiteraufbau	Leiterwiderstand bei 20 °C max. [Ohm/km]					
			verzinnt	versilbert	vernickelt			
32	0,034	7 x 0,079	620	567	607			
30	0,057	7 x 0,102	374	330	363			
28	0,089	7 x 0,127	225	209	223			
26	0,141	7 x 0,160	142	133	141			
26	0,155	19 x 0,102	135	126	138			
24	0,227	7 x 0,203	88,6	82,7	86,9			
24	0,241	19 x 0,127	85,9	79,7	84,9			
22	0,355	7 x 0,254	56,1	52,1	54,4			
22	0,382	19 x 0,160	53,1	49,5	52,5			
20	0,563	7 x 0,320	35,1	32,8	34,1			
20	0,616	19 x 0,203	32,4	30,1	32,0			
18	0,897	7 x 0,404	21,9	20,6	21,3			
18	0,963	19 x 0,254	20,4	19,0	20,0			
16	1,229	19 x 0,287	15,7	14,8	15,6			
14	1,941	19 x 0,361	10,03	9,44	9,84			
12	3,085	19 x 0,455	6,29	5,94	6,17			
10	4,743	37 x 0,404	4,13	3,90	4,07			
8	8,604	133 x 0,287	2,30	2,16	2,28			
6	13,613	133 x 0,361	1,45	1,37	1,43			
4	21,153	133 x 0,450	0,918	0,865	0,902			
2	33,696	665 x 0,254	0,600	0,557	0,580			
1	41,398	817 x 0,254	0,488	0,455	0,472			
0	52,951	1045 x 0,254	0,380	0,354	0,370			
00	67,392	1330 x 0,254	0,298	0,278	0,291			
0000	106,865	2109 x 0,254	0,183	0,177	0,183			

Dimensionierung von Kupferdrähten und -litzen

Inch = Zoll, 1 Zoll = 25,4 mm

Die Angaben gelten für Massivdrähte und Litzen aus weich geglühtem Kupferdraht, Leiter mit Oberflächenbehandlung (z, B, versilbert, vernickelt) zeigen leicht abweichende Durchmesser und Gewichte,

AWG	Leiter-	Durch	messer	Querso	hnitt	Gewicht	max. Gleichstromwiderstand bei 20°C					
Grösse	aufbau	Duicii	essei	Queisc	.11111111	Gewicht	verzinntes Kupfer	versilbertes Kupfer	vernickeltes Kupfe			
		[Inch]	[mm]	[Circ, Mills]	[mm²]	[kg/km]	[Ω/km]	[Ω/km]	[Ω/km]			
40	Draht	.0031	0,08	10	0,005	0,04	4068	3773	4331			
38	Draht	.004	0,10	15.7	0,008	0,07	2411	2237	2477			
36	Draht	.005	0,13	25	0,01	0,11	1525	1411	1542			
34	Draht	.0063	0,16	40	0,02	0,18	951	889	945			
33	Draht	.0071	0,18	50	0,03	0,22	748	695	735			
32	Draht	.008	0,20	63	0,03	0,28	584	554	574			
	7/40	.009	0,23	70	0,04	0,31	577	538	567			
30	Draht	.010	0,25	100	0,05	0,45	374	348	361			
	7/38	.012	0,30	110	0,06	0,50	348	321	354			
29	Draht	.0113	0,28	127	0,06	0,56	292	269	282			
28	Draht	.0126	0,32	160	0,08	0,71	230	207	226			
	7/36	.015	0,38	175	0,09	0,80	223	207	223			
	19/40	.015	0,38	190	0,10	0,86	213	197	216			
27	Draht	.0142	0,36	202	0,10	0,91	182	172	177			
	7/35	.017	0,54	221	0,11	1,01	183	171	184			
26	Draht	.016	0,41	254	0,13	1,14	146	137	141			
	7/34	.019	0,48	278	0,14	1,28	139	130	138			
	19/38	.020	0,51	304	0,15	1,37	127	119	131			
25	Draht	.018	0,46	320	0,16	1,44	113	107	109			
24	Draht	.020	0,51	404	0,20	1,81	89	86	87			
	7/32	.024	0,61	441	0,22	2,04	87	81	85			
	19/36	.025	0,63	475	0,24	2,19	82	76	82			
23	Draht	.0226	0,57	510	0,26	2,29	71	68	69			
22	Draht	.025	0,63	642	0,32	2,90	56	54	54			
	7/30	.030	0,76	707	0,36	3,24	55	51	54			
	19/34	.032	0,81	760	0,38	3,47	51	48	51			
21	Draht	.0285	0,72	812	0,41	3,64	45	43	43			
	19/33	.036	0,91	950	0,48	4,37	42	39	41			
20	Draht	.032	0,81	1022	0,52	4,60	35	34	34			
	7/28	.038	0,96	1120	0,57	5,13	34	32	33			
	10/30	.039	0,99	1010	0,51	4,61	39	36	38			
	19/32	.040	1,02	1197	0,61	5,52	32	30	31			
	26/34	.039	0,99	1025	0,51	4,75	39	36	39			
19	Draht	.036	0,91	1290	0,65	5,80	28	27	27			
18	Draht	.040	1,02	1620	0,82	7,32	22	21	21			
10	7/.0152	.0456	1,16	1620	0,82	7,47	24	22	23			
	7/.0132	.0430	1,10	1778	0,90	8,17	22	20	21			
	16/30	.048	1,24	1616	0,90	7,39	25	23	24			
	19/30	.050	1,24	1909	0,82	8,78	20	19	20			
	41/34	.030	1,27	1630	0,97	7,48	25	23	24			
16		.049		2580			14					
16	Draht 7/0102	.051	1,29		1,31	11,6		13,4	13,5			
	7/.0192 19/29	.058	1,47	2580	1,31	11,8	15 16	14,0	14,4 15			
			1,45	2413 2626	1,22	11,0		14,9	 			
	26/30	.060	1,52		1,33	12,0	15	13,9	14,5			
1.5	65/34	.060	1,52	2600	1,32	11,9	16	14,5	15			
15	Draht	.057	1,45	3260	1,65	14,7	11,0	10,7	10,8			
14	7/.0242	.073	1,85	4100	2,08	19	9,15	8,82				
	19/27	.071	1,80	3838	1,94	18	10,0	9,41	9,68			
	19/.0147	.074	1,88	4106	2,08	18	9,35	8,79	-			
	41/30	.075	1,90	4141	2,10	19	9,45	8,82	9,15			

Cu-Drahtabmessungen nach QQ-W 343

AWG-Grössen werden oft auch dazu benützt, um den Aufbau von Litzen zu beschreiben. In diesem Fall wird der totale Querschnitt angegeben ohne Berücksichtigung von Abständen zwischen einzelnen Adern. Bei runden Adern beanspruchen die Abstände ungefähr10% des totalen Querschnitts. Aus diesem Grund muss für Litzen ein ungefähr5% grösserer Querschnitt gewählt werden als bei Draht. Leiterdrahttabelle für weichgeglühte Kupferdrähte [t = 20 °C]

AWG	Drahtdurchmesser	Querschnitt	Widerstand	Gewicht
Grösse	[mm]	[mm²]	$[\Omega/\text{km}]$	[kg/km]
40	0,0787	0,00487	3543	0,0433
39	0,0889	0,00621	2779	0,0552
38	0,102	0,00813	2126	0,0720
37	0,114	0,0103	1680	0,0912
36	0,127	0,0126	1362	0,113
35	0,142	0,0159	1086	0,141
34	0,160	0,0201	856,3	0,178
33	0,180	0,0255	675,9	0,228
32	0,203	0,0325	531,5	0,289
31	0,226	0,0401	429,8	0,357
30	0,254	0,0506	341,2	0,451
29	0,287	0,0645	266,4	0,576
28	0,320	0,0807	214,2	0,716
27	0,361	0,102	168,6	0,908
26	0,404	0,128	134,5	1,138
25	0,455	0,163	106,3	1,443
24	0,511	0,205	84,32	1,815
23	0,574	0,259	66,60	2,307
22	0,643	0,325	53,15	2,887
21	0,724	0,412	41,99	3,661
20	0,813	0,519	33,14	4,613
19	0,912	0,652	26,41	5,804
18	1,024	0,826	20,96	7,321
17	1,151	1,039	16,57	9,241
16	1,290	1,309	13,19	11,62
15	1,450	1,652	10,43	14,69
14	1,628	2,084	8,268	18,45
13	1,829	2,626	6,562	23,36
12	2,052	3,309	5,217	29,46
11	2,304	4,168	4,134	37,05
10	2,588		3,277	46,77
9	2,906	5,262 6,633	2,600	58,96
9 8				
	3,264	8,368	2,061	74,38
7 6	3,665	10,55	1,634	93,80
5	4,115	13,30	1,297	11,82
	4,620	16,77	1,028	149,0
4	5,189	21,15	0,8152	188,0
3	5,827	26,67	0,6466	237,1
2	6,543	33,62	0,5128	298,9
1	7,348	42,41	0,4065	377,0
0	8,252	53,49	0,3223	475,5
00	9,266	67,43	0,2557	599,5
000	10,40	85,01	0,2028	755,8
0000	11,68	107,2	0,1608	953,2

Farbcode für Messleitungen

nach DIN VDE 47100

Ader-Nr.	Farben der Ader	Ader-Nr.	Farben der Ader	Ader-Nr.	Farben der Ader
1	weiss	22	braun-blau	43	blau-schwarz
2	braun	23	weiss-rot	44	rot-schwarz
3	grün	24	braun-rot	45	weiss-braun-schwarz
4	gelb	25	weiss-schwarz	46	gelb-grün-schwarz
5	grau	26	braun-schwarz	47	grau-rosa-schwarz
6	rosa	27	grau-grün	48	rot-blau-schwarz
7	blau	28	gelb-grün	49	weiss-grün-schwarz
8	rot	29	rosa-grün	50	braun-grün-schwarz
9	schwarz	30	gelb-rosa	51	weiss-gelb-schwarz
10	violett	31	grün-blau	52	gelb-braun-schwarz
11	grau-rosa	32	gelb-blau	53	weiss-grau-schwarz
12	rot-blau	33	grün-rot	54	grau-braun-schwarz
13	weiss-grün	34	gelb-rot	55	weiss-rosa-schwarz
14	braun-grün	35	grün-schwarz	56	rosa-braun-schwarz
15	weiss-gelb	36	gelb-schwarz	57	weiss-blau-schwarz
16	gelb-braun	37	grau-blau	58	braun-blau-schwarz
17	weiss-grau	38	rosa-blau	59	weiss-rot-schwarz
18	grau-braun	39	grau-rot	60	braun-rot-schwarz
19	weiss-rosa	40	rosa-rot	61	schwarz-weiss
20	rosa-braun	41	grau-schwarz		
21	weiss-blau	42	rosa-schwarz		

Farbkurzzeichen

nach DIN, IEC* und CENELEC HD 457

Farbe	deutsche Kurzzeichen nach DIN 47002	Kurzzeichen nach DIN IEC 757
schwarz	SW	BK
braun	BR	BN
rot	RT	RD
orange	OR	OG
gelb	GE	YE
grün	GN	GN
blau	BL	BU
violett	VI	VT
grau	GR	GY
weiss	WS	WH
rosa	RS	PK
türkis	TK	TQ

^{*} IEC = International Electrotechnical Commission

Aderkennzeichnung in Anlehnung an DIN VDE 0293 Mehr- und vieladrige flexible Leitungen

Anzahl der Adern	Leitungen mit grün-gelb gekennzeichneter Ader (-J)	Leitungen ohne grün-gelb gekennzeichnete Ader (-0)
2		braun x blau
3	grün-gelb x braun x blau	schwarz x blau x braun
4	grün-gelb x schwarz x blau x braun	schwarz x blau x braun x schwarz
5	grün-gelb x schwarz x blau x braun x schwarz	schwarz x blau x braun x schwarz x schwarz
6 und mehr	grün-gelb, weitere Adern mit Zahlenaufdruck	Adern mit Zahlenaufdruck nach Abschnitt 5

Mehr- und vieladrige Kabel und Leitungen für feste Verlegung

Anzahl der Adern	Leitungen mit grün-gelb gekennzeichneter Ader (-J)	Leitungen ohne grün-gelb gekennzeichnete Ader (-0)
2	grün-gelb x schwarz*	schwarz x blau
3	grün-gelb x schwarz x blau	schwarz x blau x braun
4	grün-gelb x schwarz x blau x braun	schwarz x blau x braun x schwarz
5	grün-gelb x schwarz x blau x braun x schwarz	schwarz x blau x braun x schwarz x schwarz
6 und mehr	grün-gelb, weitere Adern mit Zahlenaufdruck	Adern schwarz mit Zahlenaufdruck

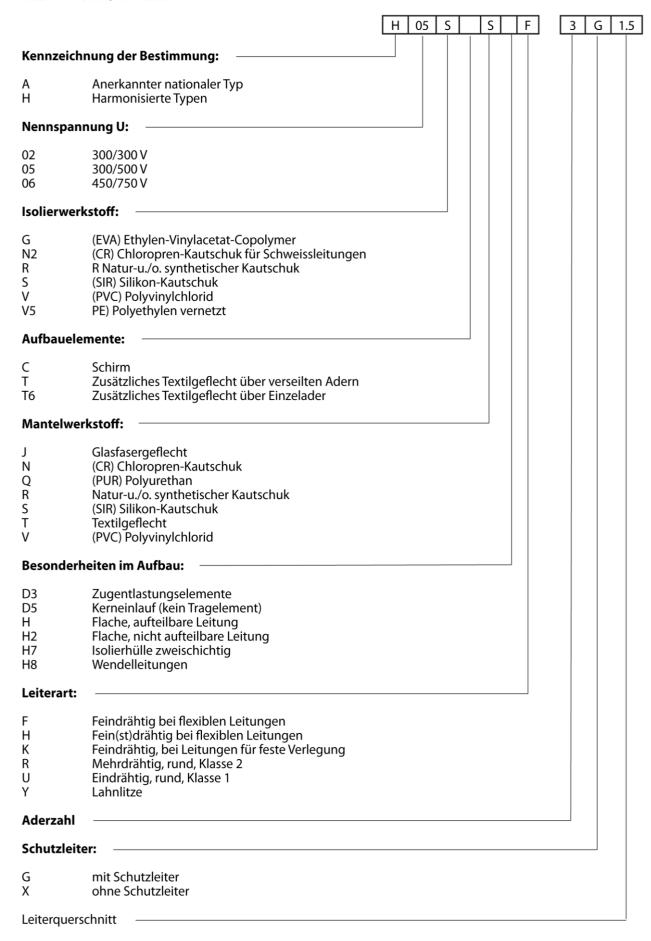
^{*} Diese Ausführung ist nach VDE 0100 Teil 540, Tabelle 2 nur für Leiterquerschnitte ab 10 mm² Cu oder 16 mm² Al zulässig.

Eigenschaften von Isolations- und Mantelwerkstoffen

aften ele	elektr.Eigenschaften		
gangs-	derstand span- bei 1 M		
% %	% Ohm x cm		
70 70	70 OHITX CHI		
300 > 10	> 10 ¹⁶ 70 2,3		
· 300 >10 ¹	>10 ¹⁶ 85 2,3		
> 300 > 10	> 10 ¹² 30 3,5		
300 > 10	> 10 ¹⁶ 75 2,3 -		
. 150 10 ¹² - 1	0 ¹² - 10 ¹⁵ 25 3,5 -		
- 300 >10 ¹	>10 ¹⁸ 15 3,0 -		
>300 >10	>10° 30 7,2		
>300 >10 ¹	>10 ¹² 30 5,5-		
>300 >10	>10 ¹² 30 3,5 -		
>300 >10 ¹³ -1	10 ¹³ -10 ¹⁶ 30 3,0-		
> 300 > 10	>10 ¹⁴ 30 3		
>3 >3 	300		

Die Angaben stellen nur Richtwerte dar und müssen im Einzelfall gegengeprüft werden.

		В	randei	gensc	hafte	en		В	eständ	digkeit	geger	1			
Kurz- zeichen	Chemische Bezeich-nung	LOI	Flamm- widrig- keit	rauch- arm	kor- ro- sive Gase	halo gen- frei	Öle	Säu- ren	Chemi- kalien	Wasser- aufnah- me	Ozon	Witte- rung	allgemeine Eigenschaften	Anwendungsbeispiele	
Thermo	plaste														
1. PE-LD	Polyethylen	< 22	gering bis gut	j	n	j	+	+	+	0,1	gut	gut	Mit dem Molekulargewicht zunehmende Witterungsbestän- digkeit. Sehr geringe Wasserauf- nahme	Datenübertragungs-, Hochfrequenz- und Niederfrequenzleitungen. Man- telwerkstoff für Erdverlegung und Zündleitungen.	
1.1 PE-HD	Polyethylen	< 22	gering bis gut	j	n	j	+	+	+	0,1	gut	bedingt	siehe oben	siehe oben	
2. PA	Polyamid	< 22	gering	j	n	j	+	0	+	1,0 - 1,5	gut	gut	hydroskopisch, Wasseraufnah- me bis zu 8%, durch geeignete Pigmentierung kann die Witte- rungsbeständigkeit noch erhöht werden; hohe Formbeständigkelt in der Wärme, hohes Dämpfungs- vermögen	Schutzhülle v. Lichtwellenleitern, zusätzlich zur Aderisolierung oder als Aussenmantel bei Spezialausfüh- rungen, Schwachstromleitungen (Da- tenübertragung im Tankstellenbereich, gewendelte Verbindungsleitungen für Sattelschlepper).	
3. PP	Polypropylen	< 22	gering bis gut	j	n	j	+	+	+	0,1	gut	gut	durch entsprechende Stabilisie- rung UV-beständig, geringere Spannungsrissbildung als PE, etwas steif	Heizleitungen, Spezialleitungen und Datenleitungen	
4. PVC	Polyvinyl- chlorid	23 - 30	gering bis gut	n	j	n	+	+	0	0,4	sehr gut	gut	in weiten Grenzen einstellbare Flexibilität, gut einfärbbar, auch durchscheinend bis transparent. Beständig gegen die Bildung von Spannungsrissen, gute Witte- rungsbeständigkeit.	Schaltdrähte und Schaltlitzen (z.B. Ge-räteverdrahtung, Termi-Point-Technik), Schlauchleitungen, Niederfrequenz-leitungen, Starkstromsteuerleitungen, Flachbandleitungen, Mantel fürRG-Hochfrequenzleitungen, Datenübertragungsleitungen, KFZ- und Zündleitungen.	
5. PETP	Polyethylenter- ephthalat	20- 25	mässig	j	n	j	+	0	+	0,5	gut	gut	geringe Wasseraufnahme, ge- ringe Spannungsempfindlichkeit	Leiter mit minimalsten Isolationswand- dicken. Elektroisolierfolie	
TPE'S															
1. TPE-A	Thermopl. Polyamid- Elastomer	< 22	gering	j	n	n	+	0	0		mässig	sehr gut	Wasseraufnahme bis zu 1,3% (Sättigung), Fiexibilität und Schlagfestigkeit bei niedrigen Temperaturen, gutes Verhalten hinsichtlich Weiterreisswiderstand und Abrieb, hervorragende Kriechstromfestigkeit und Beständigkeit gegen elektrolytische Korrosion	Aussenmantel bei Spezialleitungen	
2.TPE-U	Thermopl. Polyurethan- Elastomer	< 30	gering bis gut	j	n	j	+	+	+	1,5	gut	sehr gut	hohe Kälteflexibilität, geringe Wasseraufnahine, gute Schnittfe- stigkeit, hohes Dämpfungsvermö- gen, mikrobenbeständig	Schlauchleitungen, Starkstromlei- tungen, als Mantelwerkstoff für Spezi- alleitungen für hohe mechanische und chemische Anforderungen (Meeres- technik, Fahrzeugtechnik, Flugfelder, Montagehallen)	
3. TPE-E	Thermopl. Polyester- Elastomer	< 29	gering bis gut	j	n	j	++	++	+	0,3 - 0,6	gut	sehr gut	auch in heissem Wasser hydro- lysefest, quellbeständig in Ölen, Lösungsmitteln und Hydraulik- flüssigkeiten	dünnwandige Aderisolierung für NF, Fahrzeug und Schleppketteleitungen für höchste Biegezahlen. Mantelwerk- stoff und Wendelleitungen	
4. TPE-S	Thermopl. Styrol- Ethenbuten- Styrol- Copolymer	22 - 27	gering	n	n	j	0	++	0	1,0 - 2,0	mässig bis gut	mässig	hohe Kälteflexibilität, geringe Ölbeständigkeit und Wärmeform- beständigkeit, hohes Dämpfungs- vermögen	Isolierung für Schaltdrähte und Schaltlitzen	
5. TPE-O	Thermopl. Polyolefin- Elastomer	< 25	gering bis gut	j	n	j	+	++	0	1,5	gut	sehr gut	hydrolysefest, hohe Flexibilität auch bei tiefer Temperatur, hohe Wärmebeständigkeit. geringe Dichte, ausgezeichnete Ozonbe- ständigkeit	Mantelwerkstoff für Mess- und Steuer- leitungen in Industrieanlagen	


Die Angaben stellen nur Richtwerte dar und müssen im Einzelfall gegengeprüft werden.

						The	rmische	Eigen	scha	ften		mechai	n. Eige	nschaften	elektr. Eigenschaften		
Kurz- zeichen	Chemische Bezeichnung	VDE Bez.	Dichte			riebstem		Thermis Überlas barkeit	t-	Schmelz-/ Erweichungs- bereich	Kälte- wickel- best.	Härte	Zug- festig- keit	Reiss- dehnung	spez. Durch- gangs- widerstand	schlags- span-	Dielekt- trizitäts- zahl bei 1 MHz20°C
			g/cm³	_	bis °C	3000 h °C	nach VDE °C	240 h		°C	°C	Shore A/D	MPa	%	bei 20°C Ohm x cm	kV/mm	WII 1220 C
Fluorpo	lymere		1 3.													1 .	
1. PVDF	Polyvinylidenfluorid	10Y	1,7-1,9	- 100	135	150		160	160	170 - 180	- 65	D 75 - 80	> 20	> 100	>10 ¹⁴	25	7,0 - 10,6
2. ECTFE	Ethylen- Chlortrifluor- ethylen-Copolymer		1,68	- 100	135	150		200	230	265 - 285	- 65	D 75 - 80	> 30	> 150	>10 ¹⁵	39	2,5
3. ETFE	Ethylen-Tetrafluor- ethylen-Copolymer	7Y	1,6 - 1,8	- 100	135	180	135	200	250	265 - 285	- 65	D 70 - 75	> 30	> 150	>10 ¹⁶	36	2,3 - 2,6
4. FEP	Perfluorethylenprop y- len-Copolymer	6Y	2,0 - 2,3	- 100	200	220	180	230	240	255 - 275	- 65	D 55 - 60	> 15	> 200	> 10 ¹⁸	25	2,1
5. PFA	Perfluoralkoxy-Tetra- fluorethylen-Copo- lymer	51Y	2,0 - 2,3	- 190	250	280	250	270	270	300-310	- 65	D 55 - 60	> 20	> 200	> 10 ¹⁷	25	2,1
6. PTFE	Polytetrafluorehtyle n	5Y	2,0 - 2,3	- 190	260	300	260	300	310	320-330	- 65	D 55 - 60	> 20	> 200	10 ¹⁸	20	2
Sonder	Thermoplaste													ı			
1. PEIC	Polyimid-Silikon- Copolymer	21Y	1,18	-40	125	150	130	140	160	> 170	-65	D 67 - 72	>25	>50	>10 ¹⁵	30	3 - 3,5 5
2. PEI	Polyetherimid		1,27	-40	150	170	150	180	200	> 250	-25	D 80 - 85	>20				
3. PEEK	Polyetheretherketon	20Y	1,32	-60	220	250	220	250	300	> 340	-50	D 80 - 90	>20	>50	>10 ¹⁸	20	3.0 - 3,5
4. PI	Polyimid	8Y	1,43	-190	220	260	260	1300	400	unschmelz- bar	-65	D 80 - 90	>70	>50	>10 ¹⁷	28	3,5
Elastom	nere																
1. SIR	Silikon-Kautschuk- Mischungen	2G	1,2 - 1,3	-50	180	230	200	220	240	vernetzt	-65	A 40 - 80	6-10	>250	>10 ¹⁵	30	3,0 - 4,0
2. EPDM	Ethylen-Propylen- Terpolymer	3G	1,3-1,55	-40	90	100	90			vernetzt	- 30 bis - 50	A 43 - 90	5 - 25	200 -450	>10 ¹⁵	30	3,0 - 4,0
2.1 EPR	Ethylen-Propylen- Copolymer- Mischungen	3G	1,3-1,55	-40	90	100	90	130	160	vernetzt	-65	A 65 - 85	5- 10	> 200	10 ¹³ - 10 ¹⁵	30	3,0 - 5,0
2.2 H-EPR	Hard grade Ethylen- Propylen-Copolymer- Mischungen	3G	1,3-1,55				90	130	160	vernetzt	- 45	A 85 - D 50	9-15	> 200	>10 ¹⁵	30	3,0 - 5,0
3. EVA (EVM)	Ethylen-Vinylacetat- Copolymer- Mischungen	4G	1,3 - 1,5	-40	120	150	90	160	180	vernetzt	-50	A 70 - 90	5 - 15	> 200	10 - 10 14	30	4,0 - 7,0
4. CR	Polychloropren- Mischungen	5G	1,4-1,65	-40	90	120	90	120	140	vernetzt	- 30	A 55	10 - 20	> 250	10 ¹⁰ - 10 ¹¹	20	6,0 - 9,0
4.1 CM	Chlorierte Polyethylen Mischungen	5G		-40			90	130	150	vernetzt	- 30	A 60 - 80	10 - 15	> 250	1011-1012		6,0 - 9,0
5. CSM	Chlorsulfonierte Poly- ethylen-Mischungen	6G	1,3 -1,6	- 50	100	130	90	130	150	vernetzt	-40	A 60 - 80	10 - 20	> 250	>10 ¹³	20	8-10
6. HNBR	Hydrierter Nitrilkautschuk		1,2 - 1,5	- 30	120					vernetzt	-40	A 60 - 80	>15	300			

2.	Chemische Bezeichnung Polyvinylidenfluorid Ethylen-Chlortrifluor- ethylen-Copolymer Ethylen-Tetrafluor- ethylen-Copolymer	40 -45 60 - 65	Flamm- widrigkeit	rauch- arm	Kor- ro- sive Gase	halo- gen-			Che-					
2. ECTFE	Ethylen-Chlortrifluor- ethylen-Copolymer Ethylen-Tetrafluor-	60 -				frei	Öle	Säu- ren	mi- kali- en	Was- serauf- nahme	Ozon	Witte- rung	allgemeine Eigenschaften	Anwendungsbeispiele
2. ECTFE	Ethylen-Chlortrifluor- ethylen-Copolymer Ethylen-Tetrafluor-	60 -		Fluorpolymere										
ECTFE	ethylen-Copolymer Ethylen-Tetrafluor-		zeichnet	j	j	n	++	++	+	0,01	sehr gut	sehr gut	hohe Zähigkeit bei tiefen Temperaturen, hohe Tempera- turbeständigkeit	Schaltdrähte und Schaltlitzen für Computerverdrahtung mit Wire- Wrap-Technik,
3. ETFE		05	ausge- zeichnet	j	n	n	++	++	++	0,1	sehr gut	sehr gut	wie ETFE, etwas steifer	Schaltdrähte und Schaltltzen
		30 - 32	ausge- zeichnet	j	n	n	++	++	++	0,02	sehr gut	sehr gut	hitze- und strahlenbeständig, im Freien einsetzbar, hohe mechan. Festigkeit, niedrige Rauchentwicklung, etwas steifer als PTFE	Schaltdrähte für Wire-Wrap- Technik und Schaltlitzen für Computer- verdrahtung, Aderisolierung für Hochtemperatur-Steuerleitungen
4. FEP	Perfluorethylen- propylen-Copolymer	> 95	ausge- zeichnet	j	n	n	++	++	++	0,01	sehr gut	sehr gut	hohe thermische Beständigkeit, selbstverlöschend, geringe Rauchentwicklung, geringe Oxidationsanfälligkeit	Schaltdrähte, Schaltlitzen, Flachlei- tungen und Hochspannungszünd- leitungen für hohe Temperaturbe- anspruchung; als Mantel für HF-, Steuer- und Sonderleitungen
5. PFA	Perfluoralkoxy- Tetrafluorethylen- Copolymer	> 95	ausge- zeichnet	j	j	n	++	++	++	0,01	sehr gut	sehr gut	geringe Rauchentwicklung, geringe Oxidationsanfälligkeit	Einsatz wie PTFE, jedoch auch als Mantelwerkstoff für höhere Quer- schnitte sowie Spritzgiessartikel für die chemische Industrie
6. PTFE	Polytetrafluorehtylen	> 95	ausge- zeichnet	j	n	n	++	++	++	0,01	sehr gut	sehr gut	keine Spannungsrissbildung, unbrennbar, geringe Rauchent- wicklung, Reibungskoeffizient seh niedrig, neigt zum Kriechen, geringe Oxidationsanfälligkeit	Schaltdrähte und Schaltlitzen für hohe Temperaturbereiche, Steuer- leitungen, Aderisolierung für Hoch- frequenzleitungen, Computer-, Luft- und Raumfahrtindustrie
Sonde	r Thermoplaste													
1. PEIC	Polyimid-Silikon- Copolymer	46	gut	j	n	j	+	0	+		gut	gut	geringe Rauchentwicklung, keine korrosiven Gase im Brandfall.	dünnwandige halogenfreie Isolierung für Energie- und Steuer- leitungen
2. PEI	Polyetherimid	45 -50	gut	j	n		+	0 +	+	0,25	gut	gut	geringe Rauchentwicklung, keine korrosiven Gase im Brandfall,	dünnwandige halogenfreie Isolie- rung für Mess- und Steuerleitungen
3. PEEK	Polyetheretherketon	35	sehr gut	j	n	j	++	++	+	0,5	gut	gut	halogenfrei, gute Hydrolysebe- ständigkeit, geringe Rauch- und Giftgasentwicklung im Brand- fall, zäh und abriebfest bis in hohe Temperaturen,	halogenfreie Aderisolation höchstbelastbare ein- und mehr- adrige Spezialleitungen
Elasto	mere													
1. SIR	Silikon-Kautschuk- Mischungen	25 -30	sehr gut	j	n	j	-	0	-	1	gut	gut	antiadhäsiv, hydrophob (wasserabweisend), sehr gute Flexibilität hervorragende Heissluftbeständigkeit	Ader- und Mantelleitungen für hohe Beanspruchung (Motoren- und Apparatebau, Walzwerke, Giessereien, Hüttenbetriebe), Zündleitungen
2. EPDM	Ethylen-Propylen- Terpolymer		gering bis gut	j	n	j	-	+	+	0,02	gut	sehr gut	halogenfrei, gute Ozonbeständigkeit,	flexible Leitungen im Nieder- und Mittelspannungsbereich
2.1 EPR	Ethylen-Propylen- Copolymer Mischungen	< 22	gering	j	n	j	-	+	0	0,2	sehr gut	gut	gute elektrische und dielek- trische Eigenschaften, wasser- und witterungsbeständig	Aderisolierung bei Schlauchlei- tungen, Trossen- und Schiffkabel, Heizleitungen, Mantel für flexible Schlauchleitungen und Tauchpum- penleitungen.
2.2H- EPR	Hard grade Ethylen- Propylen-Copolymer- Mischungen	< 22	gering	j	n	j	+	+	0	0,2	gut	gut	gute elektrische und dielek- trische Eigenschaften, wasser- und witterungsbeständig	hochwertige Aderisolationen mit reduzierten Wandstärken z. B. Schiffkabel
3. EVA (EVM)	Ethylen-Vinylacetat- Copolymer- Mischungen	<22	gering	j	n	j	0	+	0	0,1	gut	gut	halogenfrei, keine Brandaus- breitung, geringe Rauchgas- dichte, ozonbeständig	Aderleitung für höhere thermische Beanspruchung Heizleitung
4. CR	Polychloropren- Mischungen	30 -34	sehr gut	n	j	n	+	++	0	1	(sehr) gut	(sehr) gut	sehr gutes Brandschutzver- halten, gute Alterungsbestän- digkeit, hohe mechanische Festigkeit	ölbeständige, schwer brennbare Gummischlauchleitungen
4.1 CM	Chlorierte Polyethy- len-Mischungen	26 - 34	gut bis sehr gut	n	j	n	+	+	0	0,1	(sehr) gut	sehr gut	sehr gute Alterungsbeständig- keit, hydrolysebeständig	Mantel für Gummischlauch- leitungen
5. CSM	Chlorsulfonierte Poly- ethylen-Mischungen	30 -34	sehr gut	n	j	n	+	+	++	1,5	gut	sehr gut	hydrolysebeständig, gute mechanische Eigenschaften, niedrige Druckverformngsreste, ozonbeständig	Mantel für Schlauchleitungen, Kfz- Zündleitungen, Spezialkabel für Offshore-Technik
6. HNBR	Hydrierter Nitrilkautschuk		gering bis gut	j	n	j	+	+	+					

Kurzzeichen für harmonisierte Leitungen

nach VDE 0281/VDE 0282

Kurzzeichen von Isolier- und Mantelwerkstoffen

nach VDE 0207 bzw. DIN 76722

DIN/VDE- HAR Kurzzeichen				Beschreibung	
	Adern	Mantel			
Υ	V	V	PVC	Polyvinylchlorid	
Yw	V2	V2	PVC	wärmebeständiges Polyvinylchlorid (+90°C oder +105°C)	
Yk:	V3	V3	PVC	kältefestes Polyvinylchlorid (-40°C)	
Х	V4	V4	xPVC	vernetztes Polyvinylchlorid	
Yö	V5	V5	öPVC	ölbeständigesPVC	
2X	Z	Х	VPE	vernetztes Polyethylen	
2Y	E		PE	Polyethylen als LDPE oder HDPE(Low/High Density)	
3Y	Q3	Q3	PS	Polystyrol	
4Y	Q4	Q4	PA	Polyamid	
5Y		E4	PTFE	Polytetrafluorethylen wie z .B. Teflon®	
6Y		E5	FEP	Perfluorethylenpropylen	
7Y		E6	ETFE	Ethylentetrafluorethylen wie z. B. Tefzel®	
9Y		E7	PP	Polypropylen	
10Y	Q6		PVDF	Polyvinylidenfluorid wie z.B. Kynar® oder Dyflor®	
11Y		Q	PUR	Polyurethan	
12Y			TPE-E	Polyeste-Elastomer z. B. Hytrel®	
13Y			TPE	Polyester-Elastomer	
18Y			TPE-O	Polyolefin-Elastomer	
31Y			TPE-S	Polystyrol-Elastomer	
41Y			TPE-A	Polyamid-Elastomer	
91Y			TPE-O	Polyolefin-Elastomer	
G	R	R	NR/NRB	Naturkautschuk, Styrol-Butadien-Kautschuk (Gummmi)	
2G			SIR	Silikonkautschuk	
GL				Glasfaser oder Glasfasergeflecht, (Silikonlack)	
Т		Т		Textilgeflecht	
Т		T2 T6		Textilgeflecht und Lagen, von Bandierung bis brandhemmmend getränkt	
3G	В	В	EPR	Ethylen-Propylen-Polymere	
4G	G	B2	EVA	Ethylen-Vinylacetat Copolymer	
5G	N2	N	CR	Polychloropren-Mischung	
		N2	CR	Polychloropren-Mischung für Schweissleitungen	
		N4	CR	Polychloropren-Mischung wärmebeständig	
		N8		Spezial-Polychloropren-Mischung wasserbeständig	
6G		N4	CSM	chlorsulfonierte Polyethylen-Mischung z.B. Hypalon®	
7G	N6	N6	FKM	Fluorelastomer z. B. Viton®	
Н			XPE	unvernetzte halogenfreie Polymermischung	
HX			HXPE	vernetzte halogenfreie Polymermischung	

Schirmung und Armierung

- Schirmung nennt man eine elektrisch leitende Umfassung um einen Ader/Verseilverbund mit dem Ziel, elektrische Störfelder zu vermeiden oder abzufangen.
- Armierung nennt man eine Umfassung um einen Ader/Verseilverbund oder ein ganzes Kabel mit dem Ziel, diesen/dieses vor mechanischen und/oder chemischen Einflüssen zu schützen.

Abk.	Aufbau	Beschreibung	Eigenschaften
С	.Geflecht aus Kupferdrähten	leitende Kupferdrähte, die geflochten werden und je nach Flechtdichte eine optische Bedeckung von 70–85 % erreicht	Leitung bleibt flexibel und kann ohne Einschränkung der elektr. Schirmung in jede Richtung bewegt werden.
S	Geflecht aus Stahldrähten	leitende Stahldrähte, die geflochten werden und je nach Flechtdichte eine optische Bedeckung von 70–85 % erreicht.	sowohl als mechanischer Schutz, als auch als Schirmumg einsetzbar – hier aber mehr gegen magnetische als elektromagnetische Felder.
D	Umlegung mit parallelen Kupferdrähten	Spiralförmige Umlegung mit parallelen Kupferdrähten, die eine optische Bedeckung von fast 100 % ermöglicht	Sehr flexibel. die hohe Schirmungsrate gilt immer nur dann, wenn die Leitung nicht oder nur wenig bewegt wird
F oder (ST)	Kupfer- oder Alubedampfte Folie	eine Kunststofffolie wird mit Aluminium oder Kupfer bedampft, was eine nahezu 100 % elektrische Schirmung ermöglicht	unflexibel, aber beste elektrischen Eigenschaften- Haupteinsatz bei Datenleitungen und Netzwerkleitungen

Ausser den oben genannten gibt es noch eine Vielzahl weiterer Armierungsmöglichkeiten, die gerade im Bereich Signal- und Bahnkabel eingesetzt werden, z.B. Stahlbandarmierung, Aluminiumbandarnierung, Bleimantel, Nichtmetallischer Nagetierschutz - z.B. Kevlarfasern.

Umrechnung britischer und amerikanischer Masse und Einheiten

Längen

1 inch = 25,4 mm1 foot = 0,3048 m1 yard = 0,9144 m

1 statute mile

(Landmeile) = 1609,341 m

1 nautical mile

(Seemeile) = 1853,181 m 1 cm = 0,3937 inches 1 m = 39,37 inches

Flächen

 1 square inch
 $= 6,4516 \text{ cm}^2$

 1 square foot
 $= 0,0929 \text{ m}^2$

 1 square yard
 $= 0,8361 \text{ m}^2$

 1 acre
 $= 4047 \text{ m}^2$

 1 square mile
 $= 2,5899 \text{ km}^2$

 1 cm²
 = 0,155 sq. in.

 1 m²
 = 10,764 sq. ft.

Volumen

1 cu. inch = 16,387 cm³
1 cu. foot = 28,3167 dm³
1 cu. yard = 0,764551 m³
1 gallon (US) = 3,78540
1 gallon (brit.) = 4,546 l
1 quart (US) = 0,946 l
1 barrel (US) = 158,8 l
1 m³ = 35,3148 cu ff

 1 m^3 = 35,3148 cu. ft. 1 dm^3 = 61,0239 cu. in.

Gewichte

1 ounce (oz) = 28,35 p 1 pound (lb) = 0,4536 kp 1 quarter = 12,7 kp

1 hundredweight

(centweight; cwt) = 50,802 kp1 kp = 2,2046 lbs.= 35,274 oz.

Temperatur

°C (Celsius) = 0,5556 * (F-32)°F (Fahrenheit) = 1,8*C+32

Leistung

1 PS = 0.736 kW1 hp = 1.014 PS= 0.7453 kW

1 kW = 1,36 PS = 1,31 hp

Nützliche Umrechnungsfaktoren

von	in	Faktor		
meters	to inches	39.7		
meters	to feet	3.28		
meters	to centimeters	100.00		
meters	to millimeters	1000.0		
kilometers	to meters	1000.00		
inches	to millimeters	25.40		
fegt	to millimeters	304.80		
yards	to millimeters	914.40		
miles	to kilometers	1.61		
pounds	to grams	453.6		
grams	to pounds	0.0022		
mm ²	CMA	1973		

von	in	Faktor
inches	to meters	0.0254
feet	to meters	0.305
centimeters	to meters	0.01
millimeters	to meters	0.001
meters	to kilometers	0.001
millimeters	to inches	0.0394
millimeters	to feet	0.00328
millimeters	to yards	0.00109
kilometers	to miles	0.6214
grams	to pounds	2.205 x 10 ³
pounds	to grams	453.600

Temperaturumrechnungstabelle Celsius/Fahrenheit

- Man sucht den gewünschten Temperaturwert in der fett gedruckten Kolonne: die Kolonne links wandelt den Wert in Celsius um
- die Kolonne rechts zeigt den gewünschten Wert ausgedrückt in Fahrenheit. Beispiel:

< 15 >

15 °F entsprechen – 9,44 °C 15 °C entsprechen 59,0 °F

°C		°F	°C		°F	°C		°F	°C		°F	°C		°F
- 40,0	-40	- 40	2,22	36	96,8	24,4	76	168,8	82,2	180	356	190,6	375	707
- 34,4	-30	- 22	2,78	37	98,6	25,0	77	170,6	85,0	185	365	193,4	380	716
- 28,9	-20	- 4	3,33	38	100,4	25,6	78	172,4	87,8	190	374	196,1	385	725
- 23,3	-10	14	3,89	39	102,2	26,1	79	174,2	90,6	195	383	198,9	390	734
- 17,8	0	32	4,44	40	104,0	26,7	80	176,0	93,3	200	392	201,7	395	743
- 17,2	1	33,8	5,00	41	105,8	27,2	81	177,8	96,1	205	401	204,4	400	752
- 16,7	2	35,6	5,56	42	107,6	27,8	82	179,6	98,9	210	410	207,2	405	761
- 16,1	3	37,4	6,11	43	109,4	28,3	83	181,4	100,0	212	413	210,0	410	770
- 15,6	4	39,2	6,67	44	111,2	28,9	84	183,2	101,7	215	419	212,8	415	779
- 15,0	5	41,0	7,22	45	113,0	29,4	85	185,0	104,4	220	428	215,6	420	788
- 14,4	6	42,8	7,78	46	114,8	30,0	86	186,8	107,2	225	437	218,4	425	797
- 13,9	7	44,6	8,33	47	116,6	30,6	87	188,6	110,0	230	446	221,1	430	806
- 13,3	8	46,4	8,89	48	118,4	31,1	88	190,4	112,8	235	455	224,0	435	815
- 12,8	9	48,2	9,44	49	120,2	31,7	89	192,2	115,6	240	464	226,7	440	824
- 12,2	10	50,0	10,0	50	122,0	32,2	90	194,0	118,3	245	473	229,5	445	833
- 11,7	11	51,8	10,6	51	123,8	32,8	91	195,8	121,1	250	482	232,2	450	842
- 11,1	12	53,6	11,1	52	125,6	33,3	92	197,6	123,9	255	491	235,0	455	851
- 10,6	13	55,4	11,7	53	127,4	33,9	93	199,4	126,7	260	500	237,8	460	860
- 10,0	14	57,2	12,2	54	129,2	34,4	94	201,2	129,4	265	509	240,5	465	869
- 9,44	15	59,0	12,8	55	131,0	35,0	95	203,0	132,2	270	518	243,3	470	878
- 8,89	16	60,8	13,3	56	132,8	35,6	96	204,8	135,0	275	527	248,9	480	896
- 8,33	17	62,6	13,9	57	134,6	36,1	97	206,6	137,8	280	536	254,4	490	914
- 7,78	18	64,4	14,4	58	136,4	36,7	98	208,4	140,6	285	545	260,0	500	932
- 7,22	19	66,2	15,0	59	138,2	37,2	99	210,2	143,3	290	554	268,6	510	950
- 6,67	20	68,0	15,6	60	140,0	37,8	100	212,0	146,1	295	563	271,1	520	968
- 6,11	21	69,8	16,1	61	141,8	40,6	105	221,0	148,9	300	572	276,7	530	986
- 5,56	22	71,6	16,7	62	143,6	43,3	110	230	151,7	305	581	282,2	540	1004
- 5,00	23	73,4	17,2	63	145,4	46,1	115	239	154,4	310	590	287,8	550	1022
- 4,44	24	75,2	17,8	64	147,2	48,9	120	248	157,2	315	599	293,3	560	1040
- 3,89	25	77,0	18,3	65	149,0	51,7	125	257	160,0	320	608	298,9	570	1058
- 3,33	26	78,8	18,9	66	150,8	54,5	130	266	162,8	325	617	304,4	580	1076
- 2,78	27	80,6	19,4	67	152,6	57,2	135	275	165,6	330	626	310,0	590	1094
- 2,22	28	82,4	20,0	68	154,4	60,0	140	284	168,3	335	635	315,6	600	1112
- 1,67	29	84,2	20,6	69	156,2	62,8	145	293	171,1	340	644	321,1	610	1130
- 1,11	30	86,0	21,1	70	158,0	65,6	150	302	173,9	345	653	326,7	620	1148
- 0,56	31	87,8	21,7	71	159,8	68,3	155	311	176,7	350	662	332,2	630	1166
0	32	89,6	22,2	72	161,6	71,1	160	320	179,4	355	671	337,8	640	1184
0,56	33	91,4	22,8	73	163,4	73,9	165	329	182,2	360	680	343,3	650	1202
1,11	34	93,2	23,3	74	165,2	76,7	170	338	185,0	365	689	371,1	700	1292
1,67	35	95,0	23,9	75	167,0	79,4	175	347	187,8	370	698			

Strombelastbarkeit

nach VDE 0100 Teil 523

Neben der Umgebungstemperatur sind noch eine Reihe weiterer Einflussfaktoren bei der Ermittlung der Belastungsströme von Bedeutung. Besondere Aufmerksamkeit gilt dabei der Verlegeart und der Umgebung, der Absicherung (Überspannungsschutz) sowie der entsprechenden Auswahl von Isolations- und Mantelwerkstoffen.

In Tabelle 1 finden Sie einen Auszug aus der VDE 0100 Teil 523 zur Strombelastung von Leitungen in Umgebungstemperatur von 30 °C.

Tabelle 2 gibt den prozentualen Anteil der Strombelastbarkeit bei Umgebungstemperaturen bis 175 °C an.

Leiter isolierter Leitungen und Kabel dürfen höchstens mit den in den nachfolgenden Tabellen angegebenen Stromstärken dauernd belastet werden, wobei folgende Gruppen zu unterscheiden sind:

Gruppe 1: Eine oder mehrere im Rohr verlegte einadrige Leitungen

Gruppe 2: Mehraderleitungen, z.B. Mantelleitungen, Stegleitungen, bewegliche Leitungen

Gruppe 3: Einadrige, frei in Luft verlegte Leitungen und Kabel, wobei diese mit einem Zwischenraum, der mindestens ihrem Durchmesser entspricht, verlegt sind

Strombelastbarkeit /z isolierter Leitungen und nicht im Erdreich verlegter Kabel bei Umgebungstemperatur von 30 °C.

Strombelastbarkeit /z von Leitungen mit erhöhter Wärmebeständigkeit Umgebungstemperaturen über 55 °C

Tabelle 1

Nenn-	Gruppe 1	Gruppe 2	Gruppe 3
querschnitt	Cu-Leiter	Cu-Leiter	Cu-Leiter
mm ²	[A]	[A]	[A]
0,75		12	15
1	11	15	19
1,5	15	18	24
2,5	20	26	32
4	25	34	42
6	33	44	54
10	45	61	73
16	61	82	98
25	83	108	129
35	103	135	158
50	132	168	198
70	165	207	245
95	197	250	292
120	235	292	344
150		335	391
185		382	448
240		453	528
300		504	608
400			726
500			830
0,75		12	15

Tabelle 2

Umgebungste bei Leitu	Strombelast- barkeit /z in % der Werte		
zulässiger Leiter- temperatur 100°C	zulässiger Leiter- temperatur 180°C	der Tabelle 1	
über 55 bis 65	über 55 bis 145	100	
über 65 bis 70	über 145 bis 150	92	
über 70 bis 75	über 150 bis 155	85	
über 75 bis 80	über 155 bis 160	75	
über 80 bis 85	über 160 bis 165	65	
über 85 bis 90	über 165 bis 170	53	
über 90 bis 95	über 170 bis 175	38	
über 55 bis 65	über 55 bis 145	100	
über 65 bis 70	über 145 bis 150	92	
über 70 bis 75	über 150 bis 155	85	

Wärmebeständigkeitsklassen

nach VDE 0530

Klasse	Isolierstoff	Tränkmittel	max. zulässige Dauer- temperatur	Isolations- & Mantelwerkstoff
Y	Baumwolle, Kunst- und Naturseide, Polyamid-Faser, Papier, Polyvinylchlorid (PVC), Polyäthylen (PE), vulk. Naturgummi		90°C	PVC, PE, CSM, HDPE, LDPE, PA
А	Baumwolle, Kunst- und Naturseide, Polyamid, Papier, Iackbehandelte Textilien, Polyesterharze	Asphaltlacke, Kunstharzlacke, Isolieröl und synthetische dielektrische Flüssigkeiten	105 °C	TPE
Е	spez. Drahtlacke, spez. Kunststoff- folien, Pressmassen mit Zellulose, Füllkörper, Papier- und Baumwollschichtstoffe	Kunstharzlacke, Polyesterharze, jeweils mit zulässiger Dauertemperatur von ≥ 120°C	120 °C	EVM, PP
В	Glasfaser, Glimmerprodukte, spez. Kunststofffolien, Pressteile mit Mineral-Füllstoffen	wie unter E, jedoch ≥ 130 °C Epoxid-Harze	130 °C	PETP, STP
F	Glasfaser, Glimmerprodukte, aromat. Polyamid, lackbehandelte Glasfasertextilien, lackbehandelter Asbest	Harze mit max. zulässiger Dauertemperatur von ≥ 155°C	155 °C	ETFE
Н	Glasfaser, Glimmerprodukte, aromat. Polyamid, Silikon-Kautschuk, Polyimidfolie, PTFE	Silikon-Harze mit max. zulässiger Dauertemperatur von ≥ 180°C	180 °C	Silikon, PTFE FEP
С	Glimmer, Porzellan, Glas, Quarz u.ä. feuerfeste Stoffe	wie unter H, jedoch ≥ 225 °C	über 180 °C	PTFE, PFA, PI/F, Glasseide, FEP, Glimmer, FPM, Keramik

Dauertemperaturen für Leiter und Werkstoffe bei Teflon-Leitungen gemäss VDE

Dauertemperatur (25'000 h)	Leiter	Isolation
130 ℃	Kupfer blank	
150 °C	Kupfer verzinnt	ETFE
180 °C	Kupfer verzinnt	
200 °C	Kupfer versilbert	ohne Isolierung
200 °C	Kupfer versilbert	FEP
260 °C	Kupfer vernickelt	PTFE/PFA
300 °C	Kupfer vernickelt	
400 °C	Kupfer versilbert	ohne Isolierung
600 °C	Reinnickel	